Ideal gas thermodynamic properties of oxygen heterocyclic compounds. Part 2. Six-membered, seven-membered and eight-membered rings

Olga V. Dorofeeva

Institute for High Temperatures, Academy of Sciences of Russia, Izhorskaya ul. 13/19, Moscow 127412 (Russia)

(Received 22 October 1991)

Abstract

The available structural parameters, fundamental frequencies and enthalpies of formation for tetrahydro-2H-pyran, 3,4-dihydro-2H-pyran, 3,6-dihydro-2H-pyran, 1,3-dioxane, 1,4-dioxane, 3,6-dihydro-l,Zdioxin, 2,3-dihydro-1,4-dioxin, 1,4-dioxin, 1,3,5trioxane, oxepane, oxepin, 1,3-dioxepane, 4,7-dihydro-1,3-dioxepin, oxocane, 1,3-dioxocane, 1,3,6-trioxocane and 1,3,5,7-tetraoxocane were critically evaluated and the recommended values were selected. Molecular constants and enthalpies of formation for some of the molecules were estimated, because experimental values for these compounds were not available. Using the rigid-rotor harmonic-oscillator approximation, this information was utilized to calculate the chemical thermodynamic functions C_p° , S° , $-(G^{\circ} - H^{\circ})/T$ and $H^{\circ} - H^{\circ}$ and the properties of formation $\Delta_f H^{\circ}$, $\Delta_f G^{\circ}$ and log K° to 1500 K in the ideal gas state at a pressure of 1 bar. The contributions to the thermodynamic properties of 1,4-dioxin undergoing inversion motion have been computed by employing a partition function formed by the summation of the inversional energy levels. These energy levels were calculated by solving the wave equation using a potential function of type $V(x) = ax^4 + bx^2$. The calculated values of the thermodynamic functions are compared with those reported in other work. Agreement with experimental data, where such are available, is satisfactory within the experimental uncertainties. Thermodynamic properties for 13 compounds are reported for the first time.

INTRODUCTION

This report involves the calculation of the ideal gas thermodynamic properties of 17 monocyclic six-, seven- and eight-membered oxygen compounds. Only for four of these compounds have the thermodynamic properties been reported previously.

Correspondence to: O.V. Dorofeeva, Institute for High Temperatures, Academy of Sciences of Russia, Izhorskaya ul. 13/19, Moscow 127412, Russia.

Thermodynamic properties of 13 three-, four- and five-membered oxygen heterocycles were presented in Part I of this series [l].

A description of the methods used for calculation of the ideal gas thermodynamic properties and for evaluation of their uncertainties was presented in the Introduction of ref. 1.

In the present work, basic information about the molecular constants adopted and the calculated thermodynamic properties is given in the tables that follow; Tables 1 and 2 involve the selected molecular constants, the calculated thermodynamic properties are given in Tables 3-19 and uncertainties in the calculated thermodynamic properties and comparisons of the calculated and experimental entropy and heat capacity values are presented in Tables 20, 21 and 22, respectively.

TETRAHYDRO-2H-PYRAN

The microwave spectrum of tetrahydro- $2H$ -pyran shows the molecule to be in the chair form [2,3]. No rotational spectrum from the boat form nor any effect that could be definitely attributed to pseudorotation or to inversion of the chair form was found. The vibrational spectra have been assigned in terms of a chair form of C_s symmetry [4,5] and the electron diffraction data have been found to be consistent with a chair form [6]. From conformational analysis, Pickett and Strauss [7] have shown that there are also two conformations, twist-boat and boat, with an energy above that of the chair form. The twist-boat and boat forms can interconvert by pseudorotation. Calculation suggests that the twist-boat forms are .at the minima of the inversion path and that the boats are the transition states at the maxima. The twist-boat conformation is approximately 35 kJ mol^{-1} higher in energy than the chair. Since the energy of the twist-boat conformation is rather high, we have not considered this form in our calculations. The product of the principal moments of inertia for the chair conformation of tetrahydro- $2H$ -pyran (Table 1) was calculated using the rotational constants of Rao and Kewley [2].

Vibrational spectra of tetrahydro- $2H$ -pyran in different phase states have been investigated by several authors [4,5,8] and the fundamentals have been assigned on the basis of force constant calculations [4,5]. The fundamental frequencies used in the present work (Table 2) were taken from the more reliable investigation of Vedal et al. [5]. These authors observed the vibrational frequencies from IR and Raman spectra for the vapour, liquid and solid states and carried out a normal coordinate analysis to confirm the vibrational assignment.

The enthalpy of formation for tetrahydro- $2H$ -pyran (Table 3) was taken from the data of Pedley et al. [9].

Ideal gas thermodynamic properties for tetrahydro- $2H$ -pyran are given in Table 3. The table of thermodynamic properties for this molecule is

Symmetry groups and products of three principal moments of inertia for six-, seven- and eight-membered ring oxygen compounds in their ground electronic state ^a

^a Ground state statistical weight is equal to 1. Other stable conformers were also taken into account for oxepane, 1,3-dioxepane, oxocane, 1,3-dioxocane, 1,3,6-trioxocane and 1,3,5,7 tetraoxocane (point group, symmetry number (σ) , number of optical isomers (n) and relative energy *(T)* are listed below for each conformer).

 b C₁, σ = 1, $n=2$, T = 0 cm⁻¹.

- C_s , $\sigma=1$, $n=1$, $T=150$ cm⁻¹; C_1 , $\sigma=1$, $n=2$, $T=500$ cm⁻ cm⁻¹; C_s , $\sigma = 1$, $n = 1$, $T = 1000$ cm⁻¹; C_{2v} , $\sigma = 2$, $n = 1$, $T = 1000$ cm⁻¹; C_s $T=1000$ cm⁻¹.
- C_1 , $\sigma=1$, $n=2$, $T=400$ cm⁻¹; C_1 , $\sigma=1$, $n=2$, $T=700$ cm⁻¹; C_s , $\sigma=1$, $n=1$, $T=800$ cm⁻¹; C_1 , $\sigma = 1$, $n = 2$, $T = 1000$ cm⁻¹.
- ϵ C_s, $\sigma = 1$, $n=1$, $T = 700$ cm⁻¹; C₁, $\sigma = 1$, $n=2$, $T = 800$ cm⁻¹; C₁, $\sigma = 1$, $n=2$, $T = 1000$ cm^{-1} .

$$
{}^{t}C_{4v}, \sigma = 4, n = 1, T = 275 \text{ cm}^{-1}.
$$

reported for the first time and there are no experimental calorimetric data for comparison. Shaw et al. [10] have estimated the values of $S^{\circ}(298.15 \text{ K})$ and C_{n}° (300 K) by application of group additivity and structural considerations. The estimated S° value is $\overline{4}$ J K⁻¹ mol⁻¹ higher than that given in Table 3, and the estimated C_p^o value is 9 J K⁻¹ mol⁻¹ lower than ours. Curl et al. [ll] developed a technique for determination of the gas state free energy functions from absolute intensity measurements in microwave spectroscopy. The value of $-(G^{\circ} - H^{\circ})/T$ at 298.15 K obtained by Curl et al. differs by ≈ 1 J K⁻¹ mol⁻¹ from our calculation.

TABLE 2

Vibrational frequencies for the reference molecules

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1$

TABLE 2 (continued)

Molecule		Frequencies, cm^{-1}
	$C_5H_{10}O_2$ 1,3-Dioxepane	A: 2925, 2920, 2877, 2865, 2850, 1465, 1432, 1427, 1410, 1345, 1320, 1254, 1220, 1136, 1047, 925, 830, 805, 760, 610, 437, 350, 215; B: 2975, 2965, 2955, 2866, 2860, 1447, 1445, 1385, 1375, 1295, 1257, 1238, 1175, 1118, 1075, 1005, 970, 845, 516, 377, 273, 175
	$C_5H_8O_2$ 4,7-Dihydro- 1,3-dioxepin	A: 3045, 2925, 2869, 2868, 1621, 1458, 1445, 1393, 1345, 1298, 1149, 1078, 979, 898, 835, 680, 618, 373, 277, 114; B: 3042, 2929, 2924, 2868, 1459, 1447, 1401, 1304, 1286, 1186, 1046, 983, 915, 841, 694, 355, 272, 207, 118
$C_7H_{14}O$	Oxocane	A: 2937, 2934, 2931, 2927, 2926, 2922, 2873, 2870, 2868, 2866, 2865, 2863, 2859, 1456, 1447, 1442, 1435, 1434, 1423, 1415, 1388, 1377, 1349, 1327, 1301, 1292, 1283, 1267, 1256, 1249, 1241, 1229, 1225, 1218, 1155, 1130, 1120, 1030, 989, 982, 942, 923, 886, 844, 831, 808, 797, 746, 711, 531, 507, 464, 410, 339, 325, 246, 206, 129, 94
	$C_6H_{12}O_2$ 1,3-Dioxocane	A: 2966, 2950, 2938, 2928, 2924, 2900, 2892, 2886, 2874, 2869, 2865, 2845, 1489, 1474, 1455, 1438, 1432, 1417, 1408, 1399, 1385, 1377, 1360, 1316, 1296, 1284, 1273, 1265, 1220, 1212, 1180, 1129, 1093, 1089, 1052, 1018, 976, 971, 895, 867, 859, 793, 754, 748, 639, 533, 501, 419, 374, 344, 305, 254, 220, 120
	$C_5H_{10}O_3$ 1,3,6-Trioxocane	4: 2979, 2960, 2955, 2953, 2932, 2899, 2892, 2885, 2871, 2865, 1480, 1474, 1456, 1436, 1417, 1415, 1409, 1399, 1379, 1358, 1336, 1297, 1281, 1263, 1255, 1191, 1151, 1126, 1100, 1066, 1023, 1018, 995, 917, 870, 857, 827, 804, 665, 542, 539, 440, 390, 337, 295, 256, 223, 122
		$C_4H_8O_4$ 1,3,5,7-Tetraoxocane A_1 : 2990, 2870, 1482, 1225, 918, 607, 484; A_2 : 1388, 1209, 1180; B ₁ : 2960, 2908, 1465, 1107, 912, 354, 126; B ₂ : 1440, 1344, 1055, 415, 147; E: 2920, 2850, 1478, 1400, 1313, 1175, 1082, 921, 540, 415

^a The ring-puckering frequency $v_{24} = 124$ cm⁻¹ is not given in the table because the contribution due to inversion of 1,4-dioxin was obtained by direct summation over the energy levels.

3,4-DIHYDRO-2H-PYRAN

Far-infrared [12] and Raman [13] spectra of 3,4-dihydro-2H-pyran have been analyzed with a two-dimensional potential energy surface for the ring-twisting and ring-bending vibrations. The twisted conformation was found to have the lowest energy. The bent form was calculated to have a second minimum on the potential surface only a few hundred cm^{-1} higher in energy than the twist form. However, no direct evidence for the exis-

\overline{T}	\tilde{C}°_{p}	S°	$-(G^{\circ}-$	H° – H° ₀	$\Delta_{f}H^{\circ}$	$\Delta_f G^{\circ}$	log K _f ^o
(K)	$(J K^{-1})$	$(J K^{-1})$	H° ₀ $/T$	(kJ	(kJ	(kJ	
	$mol-1$	$mol-1$	(J K ⁻¹	mol^{-1}	$mol-1$	$mol-1$	
			$mol-1$				
$\bf{0}$	0.000	0.000	0.000	0.000	-188.366	-188.366	
100	41.621	240.133	204.873	3.526	-201.595	-166.107	86.764
200	66.278	276.136	231.836	8.860	-212.823	-126.209	32.962
298.15	99.139	308.453	251.732	16.911	-223.400	-81.416	14.264
300	99.823	309.069	252.084	17.095	-223.593	-80.541	14.023
400	137.092	342.909	270.539	28.948	-232.941	-31.390	4.099
500	171.015	377.238	288.447	44.395	-240.298	19.881	-2.077
600	199.699	411.031	306.075	62.974	-245.740	72.467	-6.309
700	223.664	443.669	323.416	84.178	-249.599	125.822	-9.389
800	243.798	474.888	340.414	107.579	-252.141	179.643	-11.729
900	260.833	504.614	357.021	132.834	-253.604	233.713	-13.564
1000	275.317	532.866	373.205	159.661	-254.179	287.898	-15.038
1100	287.677	559.701	388.950	187.827	-254.018	342.103	-16.245
1200	298.257	585.198	404.250	217.137	-253.238	396.270	-17.249
1300	307.339	609.439	419.110	247.428	-251.959	450.340	-18.095
1400	315.161	632.509	433.535	278.563	-250.227	504.302	-18.816
1500	321.922	654.489	447.539	310.425	-248.142	558.126	-19.435

Ideal gas thermodynamic properties for tetrahydro- $2H$ -pyran

tence of the metastable bent form has been found from IR, Raman or microwave spectra [12-161. Dodziuk et al. [17] did not find a bent conformation from molecular mechanics calculations. Recently Tecklenburg and Laane [18] have reinvestigated the vibrational potential energy surface of 3,4-dihydro-2H-pyran and have determined that the molecule has an energy minimum corresponding to the twisted conformation and that the bent form is at a saddle point on the surface and is not energetically stable. Because of these new data, only one stable conformation, the twisted form $(C,$ symmetry), of 3,4-dihydro-2H-pyran was taken into account in present work. The product of the principal moments of inertia for the twisted conformation of 3,4-dihydro-2*H*-pyran (Table 1) was calculated using the rotational constants determined from the microwave investigation [16].

Only the three lowest out-of-plane ring-deformation modes were assigned from the far-infrared spectra of 3,4-dihydro-2H-pyran $[12,19]$ and these values are given in Table 2. The remaining fundamental frequencies (Table 2) were estimated by normal coordinate calculations in the present work. The force field with 26 parameters was constructed by transferring force constants from tetrahydro-2H-pyran, 1,4-dioxin and cyclohexene. Normal coordinate calculations were performed for the above three molecules using vibrational frequencies from Table 2 and ref. 20. Simple valence force fields for tetrahydro- $2H$ -pyran, 1.4-dioxin and cyclohexene

TABLE 3

\overline{T}	C_{p}°	\mathcal{S}°	$-(G^{\circ}-$	H° – H° ₀	$\Delta_{\rm f} H^{\circ}$	$\Delta_f G^\circ$	log K ^o
(K)	$(J K^{-1})$	$(J K^{-1})$	H°_{0}/T	(kJ	(kJ	(kJ	
	$mol-1$	$mol-1$	$($ J K^{-1}	$mol-1$	$mol-1$	$mol-1$	
			mol^{-1}				
0	0.000	0.000	0.000	0.000	-97.937	-97.937	∞
100	42.077	245.716	209.851	3.587	-108.106	-83.249	43.484
200	62.902	280.778	236.965	8.762	-116.798	-54.994	14.363
298.15	92.157	311.113	256.393	16.315	-125.100	-22.871	4.007
300	92.761	311.685	256.732	16.486	-125.252	-22.242	3.873
400	125.367	342.866	274.359	27.403	-132.631	13.252	-1.730
500	154.639	374.072	291.188	41.442	-138.472	50.423	-5.268
600	179.152	404.503	307.553	58.170	-142.836	88.643	-7.717
700	199.472	433.694	323.504	77.133	-145.998	127.483	-9.513
800	216.439	461.470	339.029	97.953	-148.169	166.712	-10.885
900	230.734	487.812	354.110	120.332	-149.534	206.161	-11.965
1000	242.857	512.767	368.739	144.028	-150.236	245.727	-12.835
1100	253.187	536.411	382.917	168.844	-150.386	285.334	-13.549
1200	262.023	558.830	396.651	194.615	-150.067	324.937	-14.144
1300	269.608	580.110	409.951	221.206	-149.367	364.489	-14.645
1400	276.141	600.335	422.834	248.502	-148.311	403.981	-15.073
1500	281.791	619.585	435.314	276.405	-146.975	443.384	-15.440

Ideal gas thermodynamic properties for $3,4$ -dihydro-2H-pyran

(with 18, 18 and 14 parameters, respectively) obtained after refinements reproduce the experimental vibrational spectra of these molecules with an average error of 12, 26 and 14 cm⁻¹, respectively. The average uncertainty of the calculated vibrational frequencies of 3,4-dihydro-2 H -pyran is believed to be about 50 cm^{-1}.

The enthalpy of formation of 3,4-dihydro-2H-pyran (Table 4) was taken from the data of Pedley et al. [9].

Ideal gas thermodynamic properties for $3,4$ -dihydro-2H-pyran are given in Table 4. No experimental or theoretical data are available for comparison.

3,6-DIHYDRO-2 H-PYRAN

The microwave spectrum of 3,6-dihydro-2H-pyran has been studied by Wells and Malloy [21]. Based on the limited data available, the authors could not achieve a complete structural determination. Model calculations to reproduce the rotational constants indicated that the data are consistent with a twisted (half-chair) conformation. According to semiempirical calculations $[22]$, 3.6-dihydro-2H-pyran can undergo interconversion, and the bent (boat) conformation was found to be 5 kJ mol⁻¹ less stable than the twisted form. The stable twisted ground-state configuration was established from the one-dimensional potential energy function for the twist vibration of 3,6-dihydro-2H-pyran, which was calculated by Dixon et al. [19] on the basis of far-infrared spectra. Tecklenburg and Laane [18] reanalyzed the far-infrared and Raman data for 3,6-dihydro-2H-pyran in terms of two-dimensional vibrational potential energy surfaces for the ring-bending and ring-twisting vibrations; they determined that the molecule has an energy minimum corresponding to the twisted conformation and that the bent form is at a saddle point on the surface and is not energetically stable. Because of these data, only one stable conformation, the twisted form (C_1) symmetry), of 3,6-dihydro-2 H -pyran was taken into account in the present work. The product of the principal moments of inertia given in Table 1 was calculated using the rotational constants of Wells and Malloy [21].

Only the three lowest out-of-plane ring-deformation modes were assigned from the far-infrared spectra of 3,6-dihydro-2H-pyran [19] and these values are accepted in Table 2. The other fundamental frequencies (Table 2) were calculated in the present work using 22 force constants transferred from tetrahydro- $2H$ -pyran, 1,4-dioxin and cyclohexane, as was done above for 3.4-dihydro-2 H -pyran. The average uncertainty of calculated vibrational frequencies is believed to be about 50 cm^{-1} .

There are no experimental or theoretical data on the enthalpy of formation of 3.6-dihydro-2H-pyran. In Table 5 its value is assumed to be the same as for 3,4-dihydro-2*H*-pyran. Taking into account a close similarity between the $\Delta_f H^{\circ}(298.15 \text{ K})$ values of 2,3- and 2,5-dihydrothiophene [9], the enthalpy of formation of 2,5-dihydrofuran was previously accepted as being nearly the same as for 2,3-dihydrofuran [l].

Ideal gas thermodynamic properties for $3,6$ -dihydro-2H-pyran are given in Table 5. No experimental or theoretical data are known for comparison.

1.3-DIOXANE

The microwave spectrum of 1,3-dioxane [23] showed that the observed conformer must be the chair form. The vibrational spectra have been assigned in terms of a chair form of C_s symmetry [8]. Excellent agreement with the chair conformation was demonstrated by the electron diffraction data [24]. Conformational energy calculations $[7,25-27]$ have shown that there are also two conformations, twist-boat and boat, with an energy above that of chair form. The twist-boat forms are at the minima of the inversion path and the boat forms are at the maxima. The twist-boat conformer $(C_2$ symmetry) is about 20 kJ mol⁻¹ higher in energy than the chair conformer and we have not considered this form in our calculations. The product of the principal moments of inertia for the chair conformer of 1,3-dioxane (Table 1) was calculated using the rotational constants determined from microwave data [3,23].

T	C_p°	S°	$-(G^{\circ}-$	$H^{\circ} - H^{\circ}$	$\Delta_f H^\circ$	$\Delta_f G^{\circ}$	log K ^o
(K)	$(J K^{-1})$	$({\bf J}\ {\bf K}^{-1}$	H° ₀)/T	(kJ	(IJ	(kJ	
	$mol-1$	mol^{-1}	$(J K^{-1})$	$mol-1$	$mol-1$	$mol-1$	
			$mol-1$				
0	0.000	0.000	0.000	0.000	-98.035	-98.035	∞
100	41.915	245.588	209.814	3.577	-108.213	-83.343	43.533
200	63.938	280.839	236.901	8.788	-116.872	-55.080	14.385
298.15	94.554	311.860	256.475	16.513	$-125,000$	-22.994	4.028
300	95.177	312.447	256.818	16.689	-125.148	-22.366	3.894
400	128.394	344.426	274.715	27.884	-132.248	13.011	-1.699
500	157.687	376.317	291.856	42.231	-137.782	49.991	-5.222
600	181.964	407.285	308.530	59.253	-141.852	87.958	-7.657
700	201.980	436.886	324.770	78.481	-144.748	126.499	-9.439
800	218.651	464.978	340.556	99.538	-146.683	165.392	-10.799
900	232.681	491.565	355.871	122.124	$-147,840$	204.478	-11.867
1000	244.576	516.712	370.710	146.003	-148.359	243.658	-12.727
1100	254.710	540.511	385.074	170.980	-148.348	282.863	-13.432
1200	263.378	563.055	398.975	196.896	-147.885	322.050	-14.018
1300	270.819	584.438	412.426	223.615	-147.056	361.174	-14.512
1400	277.229	604.748	425.444	251.025	-145.886	400.228	-14.933
1500	282.771	624.069	438.047	279.032	-144.447	439.187	-15.294

TABLE 5 Ideal gas thermodynamic properties for 3.6 -dihydro- $2H$ -pyran

The vibrational frequencies of 1,3-dioxane used in our calculations (Table 2) were taken from the study of Pickett and Strauss [8]. These authors have examined the vapour and liquid-phase IR spectra and liquidphase Raman spectrum, and have carried out a normal coordinate analysis to confirm their vibrational assignment.

The enthalpy of formation of 1,3-dioxane (Table 5) was taken from the data of Pedley et al. f9].

Ideal gas thermodynamic properties for 1,3-dioxane are given in Table 6. The calculated values of S° (Table 21) and C° (Table 22) are in good agreement with those presented in TRC tables [28]. The value of $-(G^{\circ} H^{\circ}$ ₀)/T at 298.15 K obtained by Curl et al. [11] from absolute intensity measurements in the microwave spectrum is 2 J K⁻¹ mol⁻¹ higher than that given in Table 6.

1,4-DIOXANE

It has been established from an electron diffraction study [29] and from conformational analysis $[7,25,30]$, that the lowest energy form of 1,4-dioxane is the chair $(C_{2h}$ symmetry). On the energy profile during the chair-chair inversion process, the chair and twist-boat forms are located at the minima and the boat forms at the maxima. The twist-boat form is

\overline{T}	\tilde{C}°_{p}	S°	$-(G^{\circ}-$	$H^{\circ} - H^{\circ}_{\ 0}$	$\Delta_{f}H^{\circ}$	$\Delta_f G^{\circ}$	log K ^o _f
(K)	$(J K^{-1})$	(J $\rm K^{-1}$	H° ₀)/T	(kJ	(kJ	(kJ	
	$mol-1$	$mol-1$	$(J K^{-1})$	$mol-1$	$mol-1$	$mol-1$	
			$mol-1$				
$\bf{0}$	0.000	0.000	0.000	0.000	-311.470	-311.470	∞
100	40.360	239.147	204.245	3.490	-323.124	-289.040	150.977
200	61.928	273.454	230.641	8.563	-333.049	-251.048	65.566
298.15	89.396	303.080	249.635	15.934	-342.300	-208.805	36.581
300	89.968	303.634	249.966	16.100	-342.469	-207.982	36.212
400	121.537	333.840	267.150	26.676	-350.637	-161.872	21.138
500	150.798	364.176	283.526	40.325	-357.066	-113.907	11.900
600	175.770	393.944	299.460	56.690	-361.813	-64.796	5.641
700	196.671	422.656	315.023	75.343	-365.163	-15.014	1.120
800	214.191	450.096	330.206	95.912	-367.353	35.170	-2.296
900	228.958	476.201	344.990	118.090	$-368,593$	85.569	-4.966
1000	241.463	500.989	359.361	141.628	-369.053	136.063	-7.107
1100	252.095	524.515	373.315	166.320	-368.872	186.569	-8.859
1200	261.166	546.849	386.853	191.995	-368.151	237.039	-10.318
1300	268.933	568.068	399.984	218.510	-366.998	287.422	-11.549
1400	275.608	588.249	412.717	245.745	-365.453	337.708	-12.600
1500	281.367	607.465	425.065	273.601	-363.605	387.871	-13.507

TABLE 6

Ideal gas thermodynamic properties for 1,3-dioxane

approximately 30 kJ mol⁻¹ higher in energy than the most stable chair conformation and this form was not taken into account in our calculations. The structural parameters derived by Davis and Hassel [29] from an electron diffraction study were employed for calculating the product of the principal moments of inertia of 1,4-dioxane (Table 1).

The vibrational spectra of 1,4-dioxane have been studied by several researchers [4,8,30-341. The values of three out-of-plane ring modes (239, 279 and 408 cm⁻¹) given in Table 2 are those obtained from far-infrared study [30]. Other vibrational frequencies of 1,4-dioxane used in our calculations were taken from the study of Ellestad et al. [33]. These authors have investigated the IR spectra of 1,4-dioxane in the vapour phase and as a liquid and the Raman spectra of the liquid, and have carried out normal coordinate calculations to confirm their vibrational assignment.

The enthalpy of formation for 1,4-dioxane (Table 7) was taken from the data of Pedley et al. [9].

Ideal gas thermodynamic properties for 1,4-dioxane are given in Table 7. Agreement with other calculated data [28,33,35] (Tables 21 and 22) is satisfactory within the uncertainties of calculated values. No experimental data are available for comparison.

3,6-DIHYDRO-1,2-DIOXIN

Only microwave and photoelectron spectroscopic studies are known for 3,6-dihydro-1,2-dioxin [36,37]. According to microwave data [36], the molecule has a nonplanar half-chair conformation of C_2 symmetry. Using the bond lengths C=C, C–C, C–O and C–H and the bond angles C=C–C and H-C-H borrowed from analogous molecules, Kondo et al. [36] have estimated the remaining structural parameters. The value of the dihedral angle around the peroxide bond determined in this manner is close to that obtained from the photoelectron spectrum [37]. The product of the principal moments of inertia for 3,6-dihydro-1,2-dioxin (Table 1) was calculated using the rotational constants determined from microwave study [36].

The vibrational spectrum of 3,6-dihydro-1,2-dioxin was investigated neither experimentally nor theoretically. In this work vibrational frequencies of 3,6-dihydro-1,2-dioxin (Table 2) have been calculated using 21 force constants transferred from tetrahydro- $2H$ -pyran, 1,3-dioxane, cyclohexene and 1,2,4-trioxolane. Simple valence force fields for these molecules (with 18, 20, 15 and 16 parameters, respectively) have been obtained using vibrational frequencies from Table 2 and refs. 1 and 20. The determined force fields reproduce the experimental vibrational spectra of the above four molecules with an average error of 12, 14, 14 and 17 cm^{-1} , respec-

τ		S°	$-(G^{\circ}-$				
(K)	C_p° $(J K^{-1})$	$(J K^{-1})$	H° ₀)/T	$H^{\circ} - H^{\circ}$ (kJ	$\Delta_f H^{\circ}$ (kJ	$\Delta_f G^{\circ}$ (kJ	log K ^o _f
	mol^{-1}		$(J K^{-1})$	$mol-1$	$mol-1$	$mol-1$	
		$mol-1$	$mol-1$				
Ω	0.000	0.000	0.000	0.000	-285.330	-285.330	∞
100	41.056	233.706	198.584	3.512	-296.962	-262.334	137.027
200	63.625	268.795	225.280	8.703	-306.768	-223.836	58.459
298.15	92.123	299.299	244.648	16.294	-315.800	-181.178	31.741
300	92.711	299.871	244.987	16.465	-315.964	-180.348	31.401
400	124.760	330.947	262.586	27.345	-323.828	$-133,906$	17.486
500	153.969	362.004	279.370	41.317	-329.934	-85.689	8.952
600	178.637	392.325	295.684	57.985	-334.379	-36.390	3.168
700	199.165	421.452	311.586	76.906	-337.460	13.532	-1.010
800	216.329	449.200	327.068	97.706	-339.419	63.820	-4.167
900	230.782	475.539	342.114	120.082	-340.461	114.296	-6.633
1000	243.023	500.505	356.716	143.789	-340.753	164.847	-8.611
1100	253.435	524.169	370.873	168.625	-340.427	215.395	-10.228
1200	262.324	546.612	384.591	194.425	-339.582	265.894	-11.574
1300	269.941	567.918	397.881	221.048	-338.320	316.296	-12.709
1400	276.491	588.168	410.756	248.377	-336.681	366.594	-13.678
1500	282.146	607.441	423.231	276.316	- 334.749	416.762	-14.513

Ideal gas thermodynamic properties for 1,4-dioxane

TABLE 7

τ	C_{p}°	S°	$-(G^{\circ}-$	$H^{\circ} - H^{\circ}$	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f}G^{\circ}$	log K _f
(K)	$(J K^{-1})$	$(J K^{-1})$	H°_{0}/T	(kJ	(kJ	(kJ	
	mol^{-1}	$mol-1$	$(J K^{-1})$	$mol-1$	$mol-1$	$mol-1$	
			$mol-1$				
0	0.000	0.000	0.000	0.000	2.944	2.944	∞
100	38.198	237.501	203.170	3.433	-5.768	18.409	-9.616
200	59.186	269.793	228.735	8.212	-13.292	45.559	-11.899
298.15	86.938	298.476	246.982	15.353	-20.000	75.905	-13.298
300	87.484	299.015	247.301	15.514	-20.120	76.496	-13.319
400	116.063	328.159	263.876	25.713	-25.758	109.593	-14.311
500	140.785	356.799	279.611	38.594	-30.033	143.948	-15.038
600	161.069	384.323	294.787	53.721	-33.090	179.055	-15.588
700	177.650	410.439	309.461	70.684	-35.191	214.588	-16.013
800	191.352	435.083	323.639	89.156	-36.525	250.370	-16.347
900	202.804	458.302	337.324	108.880	-37.245	286.281	-16.615
1000	212.455	480.183	350.527	129.657	-37.463	322.245	-16.832
1100	220.640	500.827	363.261	151.322	-37.270	358.209	-17.010
1200	227.616	520.332	375.545	173.744	-36.725	394.142	-17.156
1300	233.586	538.793	387.399	196.812	-35.896	430.011	-17.278
1400	238.717	556.296	398.844	220.434	-34.802	465.812	$-17,379$
1500	243.146	572.921	409.899	244.532	-33.502	501.526	-17.464

TABLE 8 Ideal gas thermodynamic properties for 3,6-dihydro-1,2-dioxin

tively. The average uncertainty of the calculated fundamentals of 3,6-dihy $d_{\text{TO-1}}$, 2-dioxin is believed to be about 50 cm⁻¹.

There are no experimental or theoretical data on the enthalpy of formation of 3,6-dihydro-1,2-dioxin, and its value was estimated in the present work (Table 8) by comparison with the enthalpies of formation for related six-membered rings (cyclohexane, cyclohexene, tetrahydro- $2H$ pyran) and aliphatic compounds, as was done previously for dioxirane [l].

The ideal gas thermodynamic properties for 3,6-dihydro-1,2-dioxin are given in Table 8. No experimental or theoretical data are available for comparison.

2,3-DIHYDRO-1,4-DIOXIN

The most stable form of 2,3-dihydro-1,4-dioxin has been determined by far-infrared [12,18,19], Raman [13] and microwave [38] spectroscopy to be the half-chair (twisted) configuration with C_2 symmetry. In all these works the potential energy surface for half-chair interconversion was also analyzed. From spectroscopic data [12,13,38] the bent structure $(C_s$ symmetry) was found to have a second minimum on the potential surface. However, using molecular mechanics calculations, Dodziuk et al. [17] did not find a bent structure. According to the improved potential energy surface of Tecklenburg and Laane [18], 2,3-dihydro-1,4-dioxin has energy minima corresponding to the twisted conformations, whereas the bent conformations are at the saddle points on the surface and are not energetically stable. Since the energy of the bent conformation is rather high in all cases, this form was not considered in our calculations. The product of the principal moments of inertia for 2,3-dihydro-1,4-dioxin (Table 1) was calculated using the rotational constants determined from microwave study [38].

Only the three lowest out-of-plane ring-deformation modes were assigned from the far-infrared spectra of 2,3-dihydro-1,4-dioxin [19], and these values are accepted in Table 2. The other fundamental frequencies (Table 2) were calculated in the present work using 31 force constants transferred from 1,4-dioxane and 1,4-dioxin. Simple valence force fields for 1,4-dioxane and 1,4-dioxin with 17 and 15 parameters, respectively, were obtained using vibrational frequencies from Table 2. These force fields reproduce the experimental vibrational spectra of the above two molecules with an average error of 17 and 26 cm^{-1} , respectively. The average uncertainty of the calculated fundamentals of 2,3-dihydro-1,4-dioxin is believed to be about 50 cm⁻¹.

There are no experimental data on the enthalpy of formation of 2,3-dihydro-1,4-dioxin, but its value was calculated by a molecular mechanics method $(-151 \text{ kJ mol}^{-1})$ [17]. The enthalpy of formation of 2,3-dihydro-1,4-dioxin was estimated in the present work (Table 9) by comparison with known values of $\Delta_f H^{\circ}(298.15 \text{ K})$ for related compounds [9]. We considered the change in $\Delta H^{\circ}(298.15 \text{ K})$ values with the replacement of methylene groups by oxygen atoms in aliphatic and cyclic compounds, and we believed that in passing from cyclohexene or 3,4-dihydro-2 H -pyran to 2,3-dihydro-1,4-dioxin the change in $\Delta_f H^{\circ}$ (298.15 K) values might be expected approximately the same as in passing from 1-pentene to ethoxyethene.

Ideal gas thermodynamic properties for 2,3-dihydro-1,4-dioxin are presented in Table 9. No experimental or calculated data are available for comparison.

1 A-DIOXIN

Interpretation of the far-infrared spectra [39-411, vibrational spectra [39,42,43], electron diffraction data [44] and theoretical calculations [45-481 indicates that the structure of 1,4-dioxin is planar $(D_{2h}$ symmetry) and corresponds to the parabolic potential energy function with large amplitude vibrations around the planar form. The structural parameters obtained from electron diffraction investigation [44] were used for calculation of the product of the principal moments of inertia given in Table 1.

Connett et al. [42] have studied the Raman spectrum of the liquid and IR spectra of the liquid and gas phases and have proposed a vibrational assignment for 1,4-dioxin. This assignment has been confirmed by normal

τ	C_{p}°	S°	$-(G^{\circ}-$	H° - H° ₀	$\Delta_{\epsilon}H^{\circ}$	$\Delta_f G^{\circ}$	$\log K$ ^o _f
(K)	$(J K^{-1})$	$(J K^{-1})$	H° ₀ $/T$	(kJ	(kJ	(kJ	
	$mol-1$	mol^{-1}	$($ J $\rm K^{-1}$	$mol-1$	$mol-1$	$mol-1$	
			$mol-1$				
$\mathbf{0}$	0.000	0.000	0.000	0.000	-217.396	-217.396	∞
100	41.059	238.874	203.406	3.547	-225.994	-201.955	105.489
200	60.284	272.826	230.056	8.554	-233.290	-175.046	45.717
298.15	86.066	301.526	248.891	15.693	-240.000	-145.004	25.404
300	86.590	302.060	249.217	15.853	-240.121	-144.419	25.145
400	114.599	330.845	266.030	25.926	-245.886	-111.609	14.574
500	139.339	359.155	281.837	38.659	-250.308	-77.506	8.097
600	159,777	386.428	297.014	53.649	-253.502	-42.620	3.710
700	176.513	412.357	311.656	70.491	-255.725	-7.289	0.544
800	190.345	436.859	325.790	88.855	-257.166	28.309	-1.848
900	201.902	459.965	339.427	108.484	-257.981	64.048	-3.717
1000	211.641	481.756	352.581	129.175	-258.285	99.851	-5.216
1100	219.901	502.325	365.268	150.763	-258.169	135.661	-6.442
1200	226.942	521.769	377.507	173.114	-257.695	171.448	-7.463
1300	232.970	540.178	389.319	196.118	-256.930	207.176	-8.324
1400	238.153	557.638	400.723	219.680	-255.896	242.841	-9.060
1500	242.628	574.225	411.742	243.725	-254.649	278.422	-9.695

TABLE 9

Ideal gas thermodynamic properties for 2.3-dihydro-1.4-dioxin

coordinate calculations [39,43]. Vibrational frequencies given in Table 2 are those of Connett et al. [42] except for $\nu_{13}(A_{\rm u}) = 830$ cm⁻¹, the value for which is the mean between the results of two calculations [39,43].

The thermodynamic-property contributions due to ring-puckering motion of the 1,4-dioxin ring were obtained by direct summation over the energy levels calculated with the potential function. Three investigations of the ring-puckering potential function of 1,4-dioxin have been reported [39–41]. The potential function given by Strube and Laane [41] was used to calculate 60 energy levels (0 to 10500 cm⁻¹). The potential function for inversion is $V(x) = (2.861 \times 10^5 x^4 + 3.382 \times 10^3 x^2)$ cm⁻¹ (where x, in Å, is the ring-puckering coordinate) with a reduced mass of 99.75 a.u. The partition function for inversion is based on these 60 levels with the first 10 levels being the experimental levels from which the potential function was derived.

There are no experimental or theoretical data on the enthalpy of formation of 1,4-dioxin and its value was estimated in the present work (Table 10) by comparison with known values of ΔH° (298.15 K) for related compounds [9]. We considered the change in $\Lambda_f H^{\circ}$ values with the exchange of a $-CH_2$ - unit for an $-O$ - group in aliphatic and cyclic compounds, and we believe that in passing from 1,4-cyclohexadiene to 1,4-dioxin the change in $\Delta_f H^{\circ}(298.15 \text{ K})$ values might be expected to be

approximately twice as great as in passing from 1,4-pentadiene to divinyl ether. On the other hand, in passing from $1,4$ -dioxane to $1,4$ -dioxin, the change in $\Delta_f H^{\circ}(298.15 \text{ K})$ values may be expected to be nearly the same as in passing from tetrahydrofuran to furan. The adopted value of enthalpy of formation of 1,4-dioxin is the average of these two estimates.

Ideal gas thermodynamic properties for 1,4-dioxin are given in Table 10. No experimental or calculated data are available for comparison.

1,3,5-TRIOXANE

Electron diffraction studies [49,50], analysis of microwave [51-531 and vibrational [8,50,54-571 spectra and molecular mechanics calculations [7,27] indicate that the chair conformation $(C_{3v}$ symmetry) is the most stable form of 1,3,5trioxane. Calculation suggests that the twist-boat forms are at the minima of the pseudorotation path and are about 30 kJ mol⁻¹ less stable than the chair forms [7]. The product of the principal moments of inertia for the chair conformation of 1,3,5-trioxane (Table 1) was calculated using the rotational constants determined from microwave data [52].

Vibrational frequencies, listed in Table 2, were obtained by Pickett and Strauss [8] from the IR spectrum in the gas phase. This assignment was confirmed by normal coordinate calculations [8,50].

\overline{T}	C_{p}°	S°	$-(G^{\circ}-$	H° – H° ₀	$\Delta_{\text{f}}H^{\circ}$	$\Delta_f G^{\circ}$	$\log K$ ^o _f
(K)	$\overline{J K^{-1}}$	$(J K^{-1})$	H° ₀)/T	(kJ	(kJ	(kJ	
	$mol-1$	mol^{-1}	$(J K^{-1})$	$mol-1$	$mol-1$	$mol-1$	
			$mol-1$				
$\bf{0}$	0.000	0.000	0.000	0.000	-439.335	-439.335	∞
100	38.633	228.792	194.381	3.441	-449.428	-415.810	217.194
200	57.688	261.114	220.049	8.213	-458.087	-378.768	98.923
298.15	81.883	288.478	238.106	15.018	-465.900	-338.143	59.240
300	82.383	288.986	238.418	15.170	-466.041	-337.354	58.738
400	109.751	316.442	254.492	24.780	-472.716	-293.406	38.314
500	134.796	343.692	269.615	37.038	-477.812	-247.961	25.904
600	155.899	370.193	284.183	51.606	-481.448	-201.622	17.553
700	173.340	395.578	298.298	68.096	-483.902	-154.779	11.550
800	187.796	419.697	311.979	86.175	-485.395	-107.648	7.029
900	199.868	442.535	325.228	105.576	-486.112	-60.380	3.504
1000	210.018	464.133	338.049	126.084	-486.199	-13.065	0.682
1100	218.600	484.564	350.448	147.527	-485.773	34.230	-1.625
1200	225.892	503.906	362.438	169.761	-484.917	81.471	-3.546
1300	232.116	522.239	374.031	192.670	-483.718	128.619	-5.168
1400	237.452	539.641	385.244	216.155	-482.212	175.668	-6.554
1500	242.048	556.184	396.093	240.136	-480.496	222.601	-7.752

Ideal gas thermodynamic properties for 1,3,5-trioxane

The enthalpy of formation for 1,3,5-trioxane (Table 11) was taken from the data of Pedley et al. [9].

Ideal gas thermodynamic properties for 1,3,5-trioxane are given in Table 11. No experimental or theoretical data are available for comparison.

OXEPANE

Vibrational spectra of oxepane have been interpreted on the basis of a mixture of two asymmetric $(C_1$ symmetry) rigid twist-chair conformations of approximately equal energy [58]. The electron diffraction data for gaseous oxepane [59] have also been explained in terms of an approximately equimolar mixture of two twist-chair conformers. According to conformational calculation [60], other minimum-energy conformations (twist-chair and twist-boat) lie about 10 kJ mol^{-1} above the most stable twist-chair conformations. The mixture of two twist-chair conformations of equal energy was taken into account in the present work. The electron diffraction structural data of Dillen and Geise [59] for the twist-chair form $({}^{3}TC_{4},$ see notation in ref. 59) were used to calculate the product of the principal moments of inertia of oxepane (Table 1).

The vibrational frequencies of oxepane used in our calculations (Table 2) were taken from the study of Bocian and Strauss [58]. These authors

TABLE 11

τ	C_p°	S°	$-(G^{\circ}-$	$H^{\circ} - H^{\circ}$	$\Delta_f H^\circ$	$\Delta_f G^{\circ}$	log K ^o
(K)	$(J K^{-1})$	$(J K^{-1})$	H°_{0}/T	(kJ	(kJ	(kJ	
	$mol-1$	$mol-1$	$(J K^{-1})$	$mol-1$	$mol-1$	mol^{-1})	
			mol^{-1}				
$\bf{0}$	0.000	0.000	0.000	0.000	-178.971	-178.971	∞
100	50.960	263.282	224.245	3.904	-194.882	-151.542	79.156
200	82.109	307.862	255.304	10.512	-207.858	-103.091	26.924
298.15	121.657	347.714	279.168	20.437	-220.000	-49.049	8.593
300	122.474	348.469	279.593	20.663	-220.222	-47.995	8.357
400	166.789	389.803	301.906	35.137	-230.891	11.090	-1.448
500	206.908	431.444	323.698	53.873	-239.215	72.587	-7.583
600	240.758	472.252	345.074	76.307	-245.288	135.564	-11.802
700	269.030	511.553	366.070	101.838	-249.507	199.390	-14.878
800	292.797	549.073	386.619	129.963	-252.181	263.720	-17.219
900	312.926	584.754	406.669	160.276	-253.588	328.303	-19.054
1000	330.058	618.634	426.186	192.448	-253.952	392.986	-20.527
1100	344.692	650.797	445.156	226.205	-253.451	457.662	-21.732
1200	357.227	681.340	463.576	261.317	-252.220	522.264	-22.733
1300	367.996	710.370	481.453	297.592	-250.402	586.725	-23.575
1400	377.276	737.989	498.799	334.866	-248.048	651.037	-24.290
1500	385.301	764.299	515.629	373.005	-245.277	715.163	-24.904

TABLE 12

Ideal gas thermodynamic properties for oxepane

investigated the vapour-phase IR and liquid-phase Raman spectra; special attention was paid to the low-frequency region. In order to confirm the vibrational assignments, the normal coordinate calculations have been carried out.

No experimental or theoretical data on the enthalpy of formation of oxepane are available. The value presented in Table 12 was estimated in the present work by assuming that in passing from cycloheptane to oxepane the change in the $\Delta_f H^{\circ}(298.15 \text{ K})$ values will be approximately the same as in passing from cyclohexane to tetrahydro- $2H$ -pyran. It should be noted that the slight change in $\Delta_f H^{\circ}(298.15 \text{ K})$ values takes place with the exchange of a $-CH_2$ - unit for an $-O$ - group in three-, four- and five-membered rings and in aliphatic compounds.

Ideal gas thermodynamic properties for oxepane are given in Table 12. No experimental or theoretical data are available for comparison.

OXEPIN

For oxepin no experimental structural information is available so far. According to ab initio and semiempirical calculations [61,62], oxepin possesses a nonplanar boat conformation $(C_s$ symmetry). The product of the principal moments of inertia, given in Table 1, was calculated using the estimated structural parameters $r(C-O) = 1.40 \pm 0.02$ Å, $r(C=C) = 1.35 \pm 0.02$ 0.02 Å, $r(C-C) = 1.45 \pm 0.02$ Å, $r(C-H) = 1.08 \pm 0.01$ Å, \angle C-O-C = 116 \pm 2°, \angle C=C-C = 126 \pm 2°, \angle C-C-H = 120°. These values are based on comparison with parent compounds and on the results of ab initio calculation by Cremer et al. [61].

No vibrational spectral studies are known for oxepin. The fundamental frequencies presented in Table 2 were estimated in this work by normal coordinate calculations using force constants transferred from related molecules (1,3,5-cycloheptatriene, 1,3-cycloheptadiene, oxepane, 1,4-dioxin etc.) for which simple valence force fields were initially determined using vibrational frequencies from ref. 20 and Table 2. The average uncertainty of calculated vibrational frequencies of oxepin is believed to be about 50 cm^{-1} .

No experimental data on the enthalpy of formation of oxepin are available. The value of $\Delta_f H^{\circ}(298.15 \text{ K}) = -8 \text{ kJ} \text{ mol}^{-1}$ was calculated by the semiempirical MIND0/3 method [62]. From a comparison of MINDO/3 and experimental $\Delta_fH^o(298.15 K)$ values for 1,3,5-cycloheptatriene, one can suggest that this value is underestimated. In the present work the $\Delta_f H^{\circ}(298.15 \text{ K})$ value of oxepin was estimated by comparison with known values of $\Delta_fH^{\circ}(298.15 \text{ K})$ for related compounds [9]. We considered the change in $\Lambda_f H^{\circ}$ values with the exchange of a -CH₂- unit for an -0- group in aliphatic and cyclic compounds, and we believe that in passing from oxepane to oxepin the change in $\Delta_fH^o(298.15 K)$ values might be expected to be nearly the same as in passing from cycloheptane to 1,3,5-cycloheptatriene. On the other hand, in passing from 1,3,5-cycloheptatriene to oxepin, the change in Δ , $H^{\circ}(298.15 \text{ K})$ values may be expected to be approximately the same as in passing from $1,4$ -pentadiene to divinyl ether. The accepted value of $\Delta_f H^{\circ}$ (298.15 K) for oxepin (Table 13) is the average of these two estimates.

Ideal gas thermodynamic properties for oxepin are presented in Table 13. No experimental or theoretical data are available for comparison.

1,3-DIOXEPANE

The conformational properties of 1,3-dioxepane have been studied by vibrational spectroscopy [58] and by theoretical calculations [27,60,63-651. Vibrational spectra [57] were interpreted in terms of a C_2 symmetric twist-chair form as the most stable conformation. All of the conformational calculations have also indicated that the lowest energy form of 1,3-dioxepane is the twist-chair form $(C_2$ symmetry), but conflicting results concerning the other stable conformations have been reported. Three twist-chair and one twist-boat forms of $C₁$ symmetry with an energy of about 10 kJ mol⁻¹ above that of the most stable twist-chair form of C_2 symmetry were obtained by Bocian and Strauss [60] from conformational

\overline{T}	C_p°	S°	$-(G^{\circ}-$	H° – H° ₀	$\Delta_{\text{f}}H^{\circ}$	$\Delta_f G^{\circ}$	log K ^o _f
(K)	$(J K^{-1})$	$(J K^{-1})$	$H^{\circ}_{0})/T$	(kJ	(kJ	(kJ	
	$mol-1$	$mol-1$	$($ J K ^{-1}	$mol-1$	$mol-1$	$mol-1$	
			$mol-1$				
$\bf{0}$	0.000	0.000	0.000	0.000	79.868	79.868	∞
100	40.816	244.182	208.931	3.525	72,575	87.608	-45.761
200	62.756	278.614	235.529	8.617	66.165	105.136	-27.458
298.15	92.543	309.054	254.729	16.197	60.000	125.592	$-22,003$
300	93.139	309.628	255.066	16.368	59.886	125.995	-21.937
400	124.641	340.793	272.600	27.277	54.367	148.896	-19.444
500	152.141	371.653	289.337	41.158	49.960	173.055	-18.079
600	174.708	401.458	305.558	57.540	46.617	198.012	-17.238
700	193.075	429.816	321.302	75.960	44.102	223.449	-16.674
800	208.167	456.615	336.557	96.046	42.248	249.205	-16.271
900	220.717	481.880	351.315	117.509	40.912	275.158	-15.970
1000	231.254	505.696	365.574	140.122	40.002	301.240	-15.735
1100	240.167	528.166	379.343	163.706	39.447	327.393	-15.546
1200	247.751	549.397	392.638	188.112	39.203	353.585	-15.391
1300	254.235	569.491	405.476	213.219	39.220	379.778	-15.259
1400	259.806	588.541	417.878	238.928	39.496	405.968	-15.147
1500	264.614	606.633	429.864	265.155	39,983	432.128	-15.048

TABLE 13

Ideal gas thermodynamic properties for oxepin

energy surface calculation. According to the conformational calculations of Sauriol-Lord and Grindley [63], three unsymmetrical twist-chair forms are less stable than the twist-chair (C_2) form by only 4-7 kJ mol⁻¹. Molecular mechanics calculation [27] has predicted the energy of the twist-boat form $(C_1$ symmetry) to be nearly the same as for the twist-chair form of C_2 symmetry. From the conformational energy calculations of Kamalov et al. [64,65], 1,3-dioxepane exists predominantly as the twist-chair $(C_2$ symmetry) form. In the present work we have performed calculations of the standard entropy of gaseous 1,3-dioxepane for models of different conformational composition. A good agreement between experimental [66] and calculated entropy values was achieved by assuming that 1,3-dioxepane exists as an equimolar mixture of twist-chair $(C₂)$ symmetry) and twist-boat $(C₁$ symmetry) forms. Thus the low-energy conformations obtained from molecular mechanics calculation [27] were taken into account in the present work (Table 1). The product of the principal moments of inertia for the twist-chair conformation of C_2 symmetry given in Table 1 was calculated using the estimated structural parameters $r(C-O) = 1.42 \pm 0.02$ Å, $r(C-C) = 1.53 \pm 0.02$ A, $r(C-H) = 1.11 \pm 0.02$ A, \angle O₁-C₂-O₃ = 111.6 \pm 2° , $\angle C_2 - O_3 - C_4 = 113.8 \pm 2^{\circ}$, $\angle C_3 - C_4 - C_5 = 108.7 \pm 2^{\circ}$, $\angle C_4 - C_5 - C_6 =$ 114.0 \pm 2°, \angle C-C-H = 109 \pm 2°, \angle O-C-H = 109 \pm 2°, τ (C₂-O₃) = 46.9 $\pm 2^{\circ}$, $\tau(O_3-C_4) = 97.7 \pm 2^{\circ}$, $\tau(C_4-C_5) = 68.2 \pm 2^{\circ}$, $\tau(C_5-C_6) = 45.8 \pm 2^{\circ}$.

\overline{T}	C_{p}°	S°	$-(G^{\circ}-$	H° – H° ₀	$\Delta_{\rm f}H^{\circ}$	$\Delta_f G^{\circ}$	log K ^o
(K)	$(J K^{-1})$	$(J K^{-1})$	H°_{0}/T	(kJ	(kJ	(kJ	
	$mol-1$	$mol-1$	$($ J $\rm K^{-1}$	$mol-1$	$mol-1$	$mol-1$	
			$mol-1$				
$\boldsymbol{0}$	0.000	0.000	0.000	0.000	-309.746	-309.746	∞
100	48.384	258.285	220.691	3.759	-324.191	-281.853	147.223
200	78.271	300.854	250.500	10.071	-335.898	-234.879	61.343
298.15	113.614	338.463	273.292	19.431	$-346,600$	-182.981	32.057
300	114.336	339.168	273.696	19.642	-346.794	-181.972	31.684
400	153.459	377.445	294.843	33.041	-356.081	-125.570	16.398
500	188.952	415.600	315.188	50.206	-363.250	-67.077	7.007
600	218.917	452.781	335.040	70.645	-368.411	-7.318	0.637
700	243.890	488.461	354.428	93.823	-371.923	53.158	-3.967
800	264.811	522.434	373.324	119.288	-374.071	114.046	-7.446
900	282.461	554.672	391.699	146.676	-375.104	175.133	-10.164
1000	297.433	585.228	409.538	175.691	-375.222	236.285	-12.342
1100	310.184	614.191	426.838	206.089	-374.585	297.409	-14.123
1200	321.080	641.660	443.605	237.666	-373.313	358.452	-15.603
1300	330.424	667.738	459.852	270.253	-371.531	419.356	-16.850
1400	338.463	692.527	475.593	303.707	-369.287	480.115	-17.913
1500	345.406	716.121	490.848	337.909	-366.683	540.697	-18.829

TABLE 14

These values are based on comparison with related compounds and on results of theoretical calculations [60].

The vibrational frequencies of 1,3-dioxepane used in our calculations (Table 2) were taken from the study of Bocian and Strauss [58]. These authors investigated the vapour-phase IR and liquid-phase Raman spectra. In order to confirm the vibrational assignments, the normal coordinate calculations have been carried out.

The enthalpy of formation for 1,3-dioxepane (Table 14) was taken from the data of Pedley et al. [9].

Ideal gas thermodynamic properties for 1,3-dioxepane are presented in Table 14. No other statistical calculations are available for comparison. The calculated value of $S^{\circ}(298.15 \text{ K})$, as shown in Table 21, coincides with the calorimetric entropy [66] within the experimental uncertainty.

4,7-DIHYDRO-1,3-DIOXEPIN

The investigations of nuclear magnetic resonance, dipole moments, photoelectronic spectra and intensities of infrared spectra [67-701, as well as a molecular mechanics calculation [70], predict that the preferred conformation of 4,7-dihydro-1,3-dioxepin is the twist-boat form of C_2 , symmetry. The product of the principal moments of inertia for this confor-

\overline{T}	C_p°	S°	$-(G^{\circ}-$	H° – $H^{\circ}_{\ 0}$	$\Delta_{\text{f}}H^{\circ}$	$\Delta_f G^{\circ}$	log K ^o
(K)	$(J K^{-1})$	(J $\rm K^{-1}$	H° ₀)/T	(kJ	(kJ	(kJ	
	$mol-1$	mol^{-1})	(J K^{-1}	$mol-1$	$mol-1$	mol^{-1}	
			mol^{-1}				
0	0.000	0.000	0.000	0.000	-213.771	-213.771	∞
100	58.525	256.402	213.593	4.281	-224.696	-192.242	100.416
200	86.999	305.876	247.977	11.580	-232.721	-156.589	40.896
298.15	117.682	346.188	273.777	21.589	-240.000	-117.647	20.611
300	118.292	346.918	274.226	21.808	-240.133	-116.893	20.353
400	150.848	385.450	297.251	35.280	-246.441	-74.818	9.770
500	179.873	422.315	318.606	51.855	-251.277	-31.329	3.273
600	204.226	457.331	338.836	71.097	-254.706	13.012	-1.133
700	224.477	490.380	358.148	92.563	-256.992	57.823	-4.315
800	241.430	521.495	376.641	115.883	-258.333	102.899	-6.719
900	255.735	550.780	394.379	140.761	-258.901	148.094	-8.595
1000	267.876	578.370	411.412	166.958	-258.833	193.318	-10.098
1100	278.223	604.400	427.785	194.276	-258.237	238.508	-11.326
1200	287.072	628.998	443.537	222.552	-257.189	283.627	-12.346
1300	294.666	652.283	458.707	251.649	-255.775	328.633	-13.204
1400	301.205	674.365	473.329	281.450	-254.021	373.526	-13.936
1500	306.857	695.344	487.437	311.860	-252.000	418.281	-14.566

Ideal gas thermodynamic properties for 4,7-dihydro-1,3-dioxepin

mation given in Table 1 was calculated using the estimated structural parameters $r(C-O) = 1.42 \pm 0.02$ A, $r(C-C) = 1.51 \pm 0.02$ A, $r(C=C) =$ 1.35 ± 0.02 A, $r(=C-H) = 1.08 \pm 0.02$ A, $r(-C-H) = 1.10 \pm 0.02$ A, \angle O₁. $C_2-O_3 = 110.7 \pm 2^{\circ}$, $\angle C_2-O_3-C_4 = 114.1 \pm 2^{\circ}$, $\angle O_3-C_4-C_5 = 112 \pm 2^{\circ}$, \angle C₄-C₅-C₆ = 123 ± 2°, \angle C=C–H = 119 ± 2°, \angle H–C–H = 106 ± 3°, $\tau(C_2-O_3) = 47.8 \pm 3^\circ$, $\tau(O_3-C_4) = 89.2 \pm 3^\circ$, $\tau(C_4-C_5) = 39 \pm 3^\circ$, $\tau(C_5-C_6)$ $= 6 + 3^{\circ}$. These values are based on comparison with related compounds and on results of molecular mechanics calculation [70].

No vibrational spectra studies are known for 4,7-dihydro-1,3-dioxepin. Fundamental frequencies presented in Table 2 were estimated in this work by normal coordinate calculations using 17 force constants transferred from cycloheptene and 1,3-dioxepane for which simple valence force fields were initially determined using vibrational frequencies from ref. 20 and Table 2. The average uncertainty of the calculated vibrational frequencies of 4,7-dihydro-1,3-dioxepin is believed to be about 50 cm⁻¹.

No experimental or theoretical data on the enthalpy of formation of 4,7-dihydro-1,3-dioxepin are available. The $\Delta_f H^{\circ}$ (298.15 K) value given in Table 15 was estimated in the present work by assuming that in passing from 1,3-dioxepane to 4,7-dihydro-1,3-dioxepin the change' in the $\Delta_f H^{\circ}(298.15 \text{ K})$ values will be approximately the same as in passing from cycloheptane to cycloheptene.

Boat-chair.

Scheme 1.

Ideal gas thermodynamic properties for 4,7-dihydro-1,3-dioxepin are given in Table 15. No experimental or calculated data are available for comparison.

OXOCANE

The boat-chair conformations were preferred for oxocane from nuclear magnetic resonance spectra [71] and molecular mechanics calculations 1721, but although the experimental data supported the boat-chair-l most stable conformation (i.e. oxygen at the (1) position), the calculation favoured the boat-chair-3 form. Burket [72] has calculated the relative energies of eight stable conformations of oxocane. Seven of these conformations were taken into account in the present work (Table 1): the most stable boat-chair-3 form $(C_1$ symmetry) as well as the boat-chair-1 (C_5) , boat-chair-4 (C_1) , boat-chair-2 (C_1) , boat-chair-5 (C_2) , crown (C_2) and boat-boat-1 (C_3) forms with energies higher than the boat-chair-3 by 150 cm⁻¹ (boat-chair-1), 500 cm⁻¹ (boat-chair-4) and 1000 cm⁻¹ (the rest of the conformations). The product of the principal moments of inertia for the boat-chair-3 conformation of oxocane given in Table 1 was caiculated using the estimated structural parameters $r(C-O) = 1.42 \pm 0.02$ Å, $r(C-C) = 1.53 \pm 0.02$ A, $r(C-H) = 1.10 \pm 0.02$ A, $\angle C_8 - C_1 - C_2 = 113 \pm 3^\circ$, $\angle C_1 - C_2 - O_3 = 113$ $f \pm 3^{\circ}$, $\angle C_2 - O_3 - C_4 = 114 \pm 3^{\circ}$, $\angle O_3 - C_4 - C_5 = 111 \pm 3^{\circ}$, $\angle C_4 - C_5 - C_6 =$ 116.8 ± 3°, $\angle C_5-C_6-C_7 = 115.7 \pm 3^\circ$, $\angle C_6-C_7-C_8 = 115 \pm 3^\circ$, $\angle C_7-C_8$ $C_1 = 114 \pm 3^\circ$, \angle H-C-C = 109 $\pm 3^\circ$, \angle H-C-O = 109 $\pm 3^\circ$, $\tau(C_1-C_2) = 65$ $+4^{\circ}$, $\tau(C_2-O_3) = 56 \pm 4^{\circ}$, $\tau(O_3-C_4) = 113 \pm 4^{\circ}$, $\tau(C_4-C_5) = 62.2 \pm 4^{\circ}$, $\tau(C_5-C_6) = 61.9 \pm 4^\circ$, $\tau(C_6-C_7) = 99.7 \pm 4^\circ$, $\tau(C_7-C_8) = 41.1 \pm 4^\circ$ $\tau(C_8-\$ C_1) = 68 \pm 4°. These values are based on comparison with structural parameters of cycloheptane, cyclooctane and their oxygen derivatives.

No vibrational spectral studies are known for oxocane. Fundamental frequencies listed in Table 2 were estimated in this work by normal coordinate calculations using 18 force constants transferred from oxepane, for which the simple valence force field was initially determined using vibrational frequencies from Table 2. The obtained force field reproduces

T	C_p°	S°	$-(G^{\circ}-$	$H^{\circ} - H^{\circ}$	$\Delta_{f}H^{\circ}$	$\Delta_f G^{\circ}$	log K _f ^o
(K)	(XK^{-1})	$($ J K^{-1}	H° ₀ $/T$	(kJ	(kJ	(kJ	
	$mol-1$	mol^{-1}	$(J K^{-1})$	$mol-1$	$mol-1$	$mol-1$	
			mol^{-1})				
0	0.000	0.000	0.000	0.000	-178.580	-178.580	∞
100	61.552	271.146	226.902	4.424	-197.032	-144.310	75.379
200	100.262	325.293	263.014	12.456	-211.606	-85.825	22.415
298.15	148.019	373.929	291.531	24.567	-225.000	-21.191	3.713
300	148.987	374.847	292.042	24.842	-225.243	-19.935	3.471
400	200.745	424.862	318.983	42.351	-236.819	50.326	-6.572
500	246.788	474.744	345.161	64.791	-245.694	123.183	-12.869
600	285.298	523.251	370.826	91.455	-252.026	197.605	-17.203
700	317.351	569.711	395.946	121.636	-256.282	272.899	-20.364
800	344.284	613.896	420.452	154.755	-258.817	348.690	-22.767
900	367.115	655.801	444.295	190.356	-259.940	424.709	-24.649
1000	386.576	695.515	467.449	228.066	-259.899	500.788	-26.158
1100	403.223	733.161	489.908	267.578	-258.893	576.815	-27.390
1200	417.502	768.874	511.680	308.632	-257.071	652.720	-28.412
1300	429.784	802.789	532.780	351.011	-254.592	728.429	-29.268
1400	440.379	835.037	553.228	394.532	-251.511	803.937	-29.995
1500	449.549	865.740	573.047	439.040	$-247,963$	879.204	-30.616

TABLE 16

Ideal gas thermodynamic properties for oxocane

the experimental vibrational frequencies of oxepane [58] with an average error of 13 cm^{-1}. The average uncertainty of the calculated vibrational frequencies of oxocane is believed to be about 50 cm⁻¹.

There are no experimental or theoretical data on the enthaipy of formation of oxocane. The value of $\Delta_f H^{\circ}(298.15 \text{ K})$ given in Table 16 was estimated in the present work by assuming that in passing from cyclooctane to oxocane the change in the $\Delta_f H^{\circ}(298.15 \text{ K})$ values will be approximately the same as in passing from cyclohexane to tetrahydro- $2H$ -pyran.

Ideal gas thermodynamic properties for oxocane are given in Table 16. No experimental or theoretical data are available for comparison.

1,3-DIOXOCANE

Nuclear magnetic resonance experiments [71,73,74] established the boat-chair-l,3 form (i.e oxygen atoms at the (1) and (3) positions; see the illustration in the Oxocane section) for 1,3-dioxocane. The vibrational frequencies calculated from the potential function were consistent only with the boat-chair-1,3 structure $[75]$. From the conformational calculations [72,75] it was concluded that the 1,3-dioxocane conformation of lowest energy is the boat-chair-1,3, with other minimum-energy forms $400-3000$ cm⁻¹ higher in energy. On the basis of these calculations, five

T	C_p°	S°	$-(G^{\circ}-$	$H^{\circ} - H^{\circ}$	$\Delta_f H^{\circ}$	$\Delta_{\rm f} G^\circ$	$\log K$ ^o _f
(K)	$(J K^{-1})$	$(J K^{-1})$	H° ₀ $/T$	(kJ	(kJ	(kJ	
	$mol-1$	$mol-1$	$(J K^{-1})$	$mol-1$	$mol-1$	$mol-1$	
			$mol-1$				
$\bf{0}$	0.000	0.000	0.000	0.000	-293.792	-293.792	∞
100	53.594	263.652	223.998	3.965	-311.092	-259.124	135.351
200	94.575	313.134	256.441	11.338	-324.759	-201.697	52.677
298.15	139.655	359.154	282.689	22.798	-336.800	-138.677	24.295
300	140.535	360.021	283.163	23.057	-337.016	-137.455	23.933
400	186.960	406.889	308.238	39.460	-347.242	-69.321	9.052
500	227.979	453.138	332.612	60.263	-355.028	1.100	-0.115
600	262.385	497.840	356.451	84.834	-360.546	72.890	-6.346
700	291.090	540.508	379.723	112.550	-364.206	145.436	-10.852
800	315.223	580.999	402.374	142.900	-366.325	218.405	-14.260
900	335.663	619.340	424.371	175.472	-367.177	291.559	-16.921
1000	353.062	655.630	445.699	209.931	-366.984	364.751	-19.052
1100	367.922	689.996	466.360	245.999	-365.927	437.879	-20.793
1200	380.651	722.569	486.365	283.444	-364.138	510.883	-22.238
1300	391.585	753.480	505.734	322.070	-361.761	583.700	-23.453
1400	401.007	782.853	524.488	361.711	-358.849	656.324	-24.487
1500	409.155	810.804	542.652	402.229	-355.520	728.723	-25.376

TABLE 17 Ideal gas thermodynamic properties for 1,3-dioxocane

conformations of 1,3-dioxocane were considered in the present work (Table 1): the most stable boat-chair-1,3 form $(C_1$ symmetry) as well as the boat-boat (C_1) , twist-boat-chair (C_1) , boat-chair-4,6 (C_2) and boat-chair- $3,5$ (C₁) forms with energies higher than the boat-chair-1,3 by 400, 700, 800 and 1000 cm^{-1} , respectively. The product of the principal moments of inertia for the boat-chair-l,3 conformation of 1,3-dioxocane, presented in Table 1, was obtained using the structural parameters calculated by Pakes et al. [75].

The vibrational frequencies of 1,3-dioxocane used in our calculations (Table 2) were taken from the study of Pakes et al. [76]. These authors have investigated the IR, far-infrared and Raman spectra, giving special attention to the low-frequency region. In order to confirm the vibrational assignments, the normal coordinate calculations have been carried out.

The enthalpy of formation for 1,3-dioxocane (Table 17) was taken from the data of Pedley et al. [9].

Ideal gas thermodynamic properties for 1,3-dioxocane are given in Table 17. No experimental or calculated data are available for comparison.

1,3,6-TRIOXOCANE

Nuclear magnetic resonance data [71,73] have indicated that, together with the boat-chair form, in a solution of 1,3,6-trioxocane there is an appreciable amount of another conformer with about the same energy. This conformer was thought to be a member of the crown family. The boat-chair-1,3,6 form (i.e. oxygen atoms at the (1) , (3) and (6) positions; see the illustration in Oxocane section) was found to be the most stable conformation for 1,3,6-trioxocane from conformational calculations [72,75]. The other minimum-energy conformations have been estimated to be higher in energy than the boat-chair-1,3,6 by 400-3000 cm⁻¹. On the basis of these calculations, four low-energy conformations of 1,3,6-trioxocane were accepted in the present work (Table 1): the most stable boat-chair-1,3,6 form $(C_1$ symmetry) as well as the boat-chair-1,4,6 (C_s) , boat-chair-2,4,7 (C_1) and boat-boat (C_1) forms with energies higher than the boatchair-1,3,6 form by 700, 800 and 1000 cm^{-1} , respectively. The product of the principal moments of inertia for the boat-chair-1,3,6 form given in Table 1 was obtained using the structural parameters calculated by Pakes et al. [75].

The vibrational frequencies of 1,3,6-trioxocane listed in Table 2 were taken from a study by Pakes et al. [76]. These authors investigated the IR, far-infrared and Raman spectra, giving special attention to the lowfrequency region. The proposed vibrational assignment was supported by a normal coordinate analysis based on a valence force field.

The enthalpy of formation for 1,3,6-trioxocane (Table 18) was taken from the data of Pedley et al. [9].

Ideal gas thermodynamic properties for 1,3,6-trioxocane are given in Table 18. No experimental or theoretical data are available for comparison.

1,3,5,7-TETRAOXOCANE

From nuclear magnetic resonance [71,73,77,78] and IR and Raman [56,79-811 spectroscopy, as well as from an X-ray investigation [82] of 1,3,5,7-tetraoxocane, it was established that only the crown conformer exists in the solid state, although two conformers, crown and boat-chair, are presented in solution, with predominance of the crown form. However, in the gas phase, the boat-chair form was found to be predominant by electron diffraction study [83] and molecular mechanics calculations [26,72]. Two conformations of 1,3,5,7-tetraoxocane were considered in the present work (Table 1): the most stable boat-chair form $(C_s$ symmetry) and the crown form $(C_{4v}$ symmetry) with energy higher than that of the boat-chair by 275 cm⁻¹. The adopted relative energy of the crown form was estimated on the basis of electron diffraction data [83] from which the equilibrium mixture of 68% boat-chair and 32% crown was found for 1,3,5,7-tetraoxocane in the gas phase. The product of the principal moments of inertia for the boat-chair conformation presented in Table 1 was calculated using the structural parameters determined by electron diffraction [83].

\overline{T}	\overline{C}_{p}°	S°	$-(G^{\circ}-$	$H^{\circ} - H^{\circ}$	$\Delta_{\rm f}H^{\circ}$	$\Delta_f G^{\circ}$	$\log K$ ^o _f
(K)	$(J K^{-1})$	$(J K^{-1})$	H° ₀)/T	(kJ	(kJ	(kJ	
	$mol-1$	$mol-1$	(XK^{-1})	$mol-1$	$mol-1$	$mol-1$	
			$mol-1$				
0	0.000	0.000	0.000	0.000	-428.050	-428.050	∞
100	52.339	262.954	223.571	3.938	-443.767	-393.231	205.400
200	88.108	309.923	255.333	10.918	-456.261	-337.707	88.199
298.15	130.005	352.720	280.357	21.575	-467.100	-277.150	48.555
300	130.833	353.527	280.806	21.816	-467.291	-275.978	48.051
400	174.325	397.213	304.447	37.106	-476.173	-210.795	27.527
500	211.927	440.283	327.327	56.478	-482.665	-143.660	15.008
600	242.765	481.742	349.635	79.264	-487.058	-75.406	6.565
700	268.069	521.127	371.346	104.846	-489.794	-6.565	0.490
800	289.105	558.337	392.417	132.736	-491.186	62.578	-4.086
900	306.795	593.440	412.822	162.556	-491.490	131.827	-7.651
1000	321.784	626.561	432.556	194.005	-490.905	201.061	-10.502
1100	334.550	657.845	451.628	226.839	-489.588	270.198	-12.830
1200	345.465	687.435	470.057	260.854	-487.653	339.193	-14.764
1300	354.830	715.466	487.866	295.880	-485.224	407.994	-16.393
1400	362.893	742.064	505.081	331.776	-482.346	476.600	-17.782
1500	369.863	767.345	521.730	368.423	-479.119	544.986	-18.978

TABLE 18

Ideal gas thermodynamic properties for 1,3,5,7-tetraoxocane

Uncertainties of the calculated thermodynamic functions $(J K^{-1} mol^{-1})$ and adopted enthalpies of formation ($kJ \text{ mol}^{-1}$)

Molecule		Uncertainties in $-(G^{\circ} - H^{\circ})/T$		Uncertainties in C_p°		Uncer- tainties
		298.15 K	1000 K	298.15 K	1000 K	in $\Delta_f H^{\circ}$ (298.15 K)
	$C_5H_{10}O$ Tetrahydro-2H-pyran	2.0	5.0	3.5	12.0	1.0
C _s H _s O	3,4-Dihydro-2H-pyran	2.0	5.5	4.0	11.0	1.5
	3,6-Dihydro-2 H -pyran	2.0	5.5	4.5	11.0	20.0
	$C_4H_8O_2$ 1,3-Dioxane	2.5	5.5	3.5	11.0	4.3
	1,4-Dioxane	2.0	4.5	3.0	10.5	0.8
	$C_4H_6O_2$ 3,6-Dihydro-1,2-dioxin	2.5	5.5	4.0	9.5	50.0
	2,3-Dihydro-1,4-dioxin	2.0	5.0	4.0	9.5	50.0
	$C_4H_4O_2$ 1,4-Dioxin	2.0	5.0	4.0	9.5	50.0
	$C_3H_6O_3$ 1,3,5-Trioxane	2.0	4.0	3.0	9.0	0.5
$C_6H_{12}O$ Oxepane		2.5	7.0	5.0	15.0	10.0
C_6H_6O	Oxepin	3.0	7.0	4.5	10.5	50.0
	$C_5H_{10}O_2$ 1,3-Dioxepane	2.5	6.0	4.5	13.5	1.5
	$C_5H_8O_2$ 4,7-Dihydro-1,3-dioxepin	4.0	10.0	5.5	12.5	30.0
$C_7H_{14}O$	Oxocane	4.0	11.0	8.0	18.5	10.0
	$C_6H_{12}O_2$ 1,3-Dioxocane	3.0	8.5	8.0	17.0	1.8
	$C_5H_{10}O_3$ 1,3,6-Trioxocane	3.5	8.5	6.0	16.0	1.0
	$C_4H_8O_4$ 1,3,5,7-Tetraoxocane	3.5	7.5	5.0	13.0	0.6

The vibrational frequencies listed in Table 2 are based on the results of the investigations of IR and Raman spectra of 1,3,5,7-tetraoxocane in the solid state and in solution [56,79-81]. Vibrational assignments proposed in these works for the crown conformer were supported by normal coordinate calculations.

TABLE 21

Comparison of experimental ^a entropies $S^{\circ}(T)$ (J K⁻¹ mol⁻¹) with calculated values

^a Experimental values of $S^{\circ}(298.15 \text{ K})$ are italic.

Comparison of heat capacity values $C_{p}^{(T)}(J K^{-1} \text{ mol}^{-1})$ calculated in different works

The enthalpy of formation for 1,3,5,7-tetraoxocane (Table 19) was taken from the data of Pedley et al. [9].

Ideal gas thermodynamic properties for 1,3,5,7-tetraoxocane are given in Table 19. The calculated value of $S^{\circ}(298.15 \text{ K})$ is about 5 J K⁻¹ mol⁻¹ lower than that obtained from calorimetric measurements [84] (Table 21). This discrepancy is essentially within the uncertainties of the experimental and calculated values. No other statistical calculations are available for comparison.

REFERENCES

- 1 O.V. Dorofeeva, Thermochim. Acta, 194 (1992) 9.
- V.M. Rao and R. Kewley, Can. J. Chem., 47 (1969) 1289.
- R.S. Lowe and R. Kewley, J. Mol. Spectrosc., 60 (1976) 312.
- R.G. Snyder and G. Zerbi, Spectrochim. Acta Part A, 23 (1967) 391.
- D. Vedal, O.H. Ellestad, P. Klaboe and G. Hagen, Spectrochim. Acta Part A, 31 (1975) 339.
- H.E. Breed, G. Gundersen and R. Seip, Acta Chem. Stand. Ser. A, 33 (1979) 225.
- H.M. Pickett and H.L. Strauss, J. Am. Chem. Sot., 92 (1970) 7281.
- H.M. Pickett and H.L. Strauss, J. Chem. Phys., 53 (1970) 376.
- 9 J.B. Pedley, R.D. Naylor and S.P. Kirby, Thermochemical Data of Organic Compounds, 2nd edn., Chapman & Hall, London, 1986.
- 10 R. Shaw, D.M. Golden and S.W. Benson, J. Phys. Chem., 81 (1977) 1716.
- 11 R.F. Curl, T. Ikeda, R.S. Williams, S. Leave11 and L.H. Scharpen, J. Am. Chem. Sot., 95 (1973) 6182.
- 12 R.C. Lord, T.C. Rounds and T. Ueda, J. Chem. Phys., 57 (1972) 2572.
- 13 J.R. Durig, R.O. Carter and L.A. Carreira, J. Chem. Phys., 60 (1974) 3098.
- 14 T.L. Smithson and H. Wieser, J. Chem. Phys., 72 (1980) 2340.
- 15 D. Garcia and E. Grunwald, J. Am. Chem. Soc., 102 (1980) 6407.
- 16 J.C. Lopez and J.L. Alonso, Z. Naturforsch. Teil A, 40 (1985) 913.
- 17 H. Dodziuk, H. Von Voithenberg and N.L. Allinger, Tetrahedron, 38 (1982) 2811.
- 18 M.M.J. Tecklenburg and J. Laane, J. Am. Chem. Soc., 111 (1989) 6920.
- 19 E.A. Dixon, G.S.S. King, T.L. Smithson and H. Wieser, J. Mol. Struct., 71 (1981) 97.
- 20 O.V. Dorofeeva, L.V. Gurvich and VS. Jorish, J. Phys. Chem. Ref. Data, 15 (1986) 437.
- 21 J.A. Wells and T.B. Malloy, Jr., J. Chem. Phys., 60 (1974) 3987.
- 22 K. Jankowski, Org. Magn. Reson., 13 (1980) 380.
- 23 R. Kewley, Can. J. Chem., 50 (1972) 1690.
- *24 Gy.* Schultz and I. Hargittai, Acta Chim. Acad. Sci. Hung., 83 (1974) 331.
- 25 D. Graveron-Demilly, J. Chem. Phys., 66 (1977) 2874.
- 26 N.L. Allinger, S.H.-M. Chang, D.H. Glaser and H. Hönig, Isr. J. Chem., 20 (1980) 51.
- 27 L. Norskov-Lauritsen and N.L. Allinger, J. Comput. Chem., 5 (1984) 326.
- 28 Selected Values of Properties of Chemical Compounds, Thermodynamic Research Center Data Project, Thermodynamics Research Center, Texas A&M University, College Station, Texas 77843 (Loose-leaf data sheets, extent 1989).
- 29 M. Davis and O. Hassel, Acta Chem. Scand., 17 (1963) 1181.
- 30 D. Graveron-Demilly, J. Chem. Phys., 79 (1983) 81.
- 31 L. Bernard, J. Chim. Phys., 63 (1966) 641.
- 32 J.P. Marsault and G. Dumas, C.R. Acad. Sci. Ser. B, 264 (1967) 782.
- 33 O.H. Ellestad, P. Klaboe and G. Hagen, Spectrochim. Acta Part A, 27 (1971) 1025.
- 34 A.Z. Chekunov and B.V. Zhadanov, Izv. Timiryazevsk. Skh. Akad., (1988) 184.
- 35 D.R. Stull, E.F. Westrum and G.C. Sinke, The Chemical Thermodynamics of Organic Compounds, Wiley, New York, 1969.
- 36 T. Kondo, M. Matsumoto and M. Tanimoto, Tetrahedron Lett., (1978) 3819.
- 37 T. Kondo, M. Tanimoto, M. Matsumoto, K. Nomoto, Y. Achiba and K. Kimura, Tetrahedron L&t., 21 (1980) 1649.
- 38 J.A. Wells and T.B. Malloy, Jr., J. Chem. Phys., 60 (1974) 2132.
- 39 R.C. Lord and T.C. Rounds, J. Chem. Phys., 58 (1973) 4344.
- 40 T.B. Malloy, Jr. and L.A. Carreira, J. Chem. Phys., 71 (1979) 2488.
- 41 M.M. Strube and J. Laane, J. Mol. Spectrosc., 129 (1988) 126.
- 42 J.E. Connett, J.A. Creighton, J.H.S. Green and W. Kynaston, Spectrochim. Acta, 22 (1966) 1859.
- 43 J.F. Arenas, J.T. Lopez-Navarrete, J.I. Marcos and J.C. Otero, Can. J. Spectrosc., 32 (1987) 14.
- 44 E.M.A. Peixoto, I. Iga and L. Mu-Tao, J. Chem. Res., Synop., (1980) 111.
- 45 B. Tinland and C. Decoret, J. Mol. Struct., 9 (1971) 205.
- 46 N. Trinajstic, J. Mol. Struct., 8 (1971) 236.
- 47 J.P. Bowen, V.V. Reddy, D.G. Patterson, Jr. and N.L. Allinger, J. Org. Chem., 53 (1988) 5471.
- 48 J.S. Murray and P. Politzer, J. Mol. Struct., 163 (1988) 111.
- 49 S. Kimura and K. Aoki, Nippon Kagaku Zasshi, 72 (1951) 169.
- 50 A.H. Clark and T.G. Hewitt, J. Mol. Struct., 9 (1971) 33.
- 51 T. Oka, K. Tsuchiya, S. Iwata and Y. Morino, Bull. Chem. Sot. Jpn., 37 (1964) 4.
- 52 J.M. Colmont, J. Mol. Struct., 21 (1974) 387.
- 53 J.M. Colmont, J. Mol. Spectrosc., 80 (1980) 166.
- 54 A.T. Stair, Jr. and J.R. Nielsen, J. Chem. Phys., 27 (1957) 402.
- 55 M. Kobayashi, R. Iwamoto and H. Tadokoro, J. Chem. Phys., 44 (1966) 922.
- 56 M. Kobayashi, J. Chem. Phys., 66 (1977) 32.
- 57 L. Dicelio, A. Batana and 0. Brieux de Mandirola, An. Asoc. Quim. Argent., 73 (1985) 165.
- 58 D.F. Bocian and H.L. Strauss, J. Am. Chem. Soc., 99 (1977) 2866.
- 59 J. Dillen and H.J. Geise, J. Mol. Struct., 64 (1980) 239.
- 60 D.F. Bocian and H.L. Strauss, J. Am. Chem. Sot., 99 (1977) 2876.
- 61 D. Cremer, B. Dick and D. Christeu, J. Mol. Struct. (Theochem), 110 (1984) 277.
- 62 D.M. Hayes, S.D. Nelson, W.A. Garland and P.A. Kollman, J. Am. Chem. Soc., 102 (1980) 1255.
- 63 F. Sauriol-Lord and T.B. Grindley, J. Am. Chem. Soc., 103 (1981) 936.
- 64 G.L. Kamalov, V.E. Kyzmin, V.N. Sharygin and G.M. Verkhivker, Vopr. Stereokhim., 7 (1978) 72.
- *65* G.L. Kamalov, V.E. Kyzmin, V.N. Sharygin and G.M. Verkhivker, Teor. Eksp. Khim., 17 (1981) 109.
- 66 G.A. Clegg and T.P. Melia, Polymer, 11 (1970) 245.
- 67 B.A. Arbuzov, E.N. Klimovitsky, A.B. Remizov and M.B. Timirbaev, Izv. Akad. Nauk SSSR, Ser. Khim., (1981) 1030.
- 68 V.V. Zverev, Ya.Ya. Villem, N.V. Villem, E.N. Klimovitsky and B.A. Arbuzov, Zh. Obshch, Khim., 52 (1982) 1888.
- 69 R. St-Amour and M. St-Jacques, Can. J. Chem., 59 (1981) 2283.
- 70 D. Pitea, G. Moro and G. Favini, J. Chem. Soc. Perkin Trans. 2, (1987) 313.
- 71 F.A.L. Anet and P.J. Degen, J. Am. Chem. Sot., 94 (1972) 1390.
- 72 U. Burkert, Z. Naturforsch. Teil B, 35 (1980) 1479.
- 73 J. Dale, T. Ekeland and J. Krane, J. Am. Chem. Soc., 94 (1972) 1389.
- 74 F.A.L. Anet, P.J. Degen and J. Krane, J. Am. Chem. Sot., 98 (1976) 2059.
- 75 P.W. Pakes, T.C. Rounds and H.L. Strauss, J. Phys. Chem., 85 (1981) 2469.
- 76 P.W. Pakes, T.C. Rounds and H.L. Strauss, J. Phys. Chem., 85 (1981) 2476.
- 77 M. Baron, J.A. Ladd and A.G. Solari, An. Asoc. Quim. Argent., 62 (1974) 151.
- 78 J.A. Ladd, J. Mol. Struct., 36 (1977) 329.
- 79 J.F. Rey Boero and 0. Brieux de Mandirola, An. Asoc. Quim. Argent., 62 (1974) 253.
- 80 J.F. Rey Boero, A. Batana and 0. Brieux de Mandirola, An. Asoc. Quim. Argent., 71 (1983) 421.
- 81 M. Kobayashi and S. Kawabata, Spectrochim. Acta Part A, 33 (1977) 549.
- 82 Y. Chatani, T. Yamauchi and Y. Mivake, Bull. Chem. Soc. Jpn., 47 (1974) 583.
- 83 E.E. Astrup, Acta Chem. Scand. Ser. A, 34 (1980) 85.
- 84 G.A. Clegg and T.P. Melia, Makromol. Chem., 123 (1969) 184.